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Abstract. We define the directed Abelian sandpile models by introducing a parameter,
representing the degree of anisotropy in the avalanche processes cwhdrés for the isotropic

case. We calculate some quantities characterizing the self-organized critical states on the one-
and two-dimensional lattices. In particular, we obtain the expected number of topplings per added
particle,(T), which shows the dependence on the lattice siasL* for largeL. We show that the
critical exponent does not depend on the dimensionadityat least foe/ = 1 and 2, and that when

any anisotropy is included in the systeam= 1, whilex = 2 in the isotropic system. This result
gives a rigorous proof of the conjecture by Kadareiffl (1989Phys. RevA 39 6524-37) that

the anisotropy will distinguish different universality classes. We introduce a new critical exponent,
6, defined byy = limy_, o (T)/L with ¢ £ 1asy ~ |c — 1|7 for |c — 1] « 1. Bothind = 1

and 2, we obtai® = 1.

1. Introduction and main results

Bak, Tang and Wiesenfeld (BTW) introduced a simple cellular automaton model, whose time-
evolution rules capture some aspects of the dynamics of sand grains tumbling on the slope
of a sand pile [1,2]. This model exhibits an extremely attractive property such that without
tuning of parameters it produces a unique critical state, which is characterized by power-law
correlations and the lack of characteristic sizes of avalanches. The critical state is called the
self-organized critical (SOC) stad—3]. The purpose of BTW was not to make models
describing the dynamics of real sandpiles, but to study the SOC state. They studied the BTW
model using Monte Carlo methods [1, 2] and by the mean-field theory [4, 5].

The BTW paper led experimentalists to study avalanches of real sandpiles. Those
experiments revealed that small avalanches have power-law distributions, but behaviours of
large avalanches are far from those of critical dynamics [3, 6]. A successful experiment in
observing SOC behaviour was performed by Frett& [7]. They studied avalanches of three
types of rice instead of sand grains and found that the avalanches of elongated grains show
SOC behaviour. Itwas also reported that the superconduction avalanches and droplet formation
show the behaviours having the SOC property [3]. Beyond experiments in laboratories, some
natural phenomena such as the distribution of earthquakes and the biological evolution of
species are expected to exhibit SOC behaviour [3, 6].

Recently, the object of many theorists has been the Abelian sandpile model (ASM) named
by Dhar [8] after its nature that operators representing the processes of adding a particle
at a randomly chosen site and relaxing the system form an Abelian group. This feature
makes the ASM tractable to analyse. Since the time evolution of the ASM is Markovian,
there are two classes of configurations in the SOC stateirrent andtransient and only
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recurrent configurations are allowed to occur with probability which is the same for all allowed
configurations. Dhar formulated, in terms of the mattixiescribing toppling rules, the total
number of allowed configurations, the entropy of the SOC state and the correlation function
of topplings in the SOC state [8].

The isotropic ASM has been well studied. The equivalence between the undirected ASM
and theg — 0 limit of the g-state Potts model is established by Majumdar and Dhar [9] by
showing the equivalence between the steady state of the ASM and the spanning trees problem
which has well known relations to the Potts model. Priezzhev obtained the fractional number
of sites having a given height for the two-dimensional ASM [10] by the method developed on
this equivalence. The exponents characterizing avalanches have been derived [11] using a more
direct representation—‘waves of toppling’ [12]. Mean-field-type theory was also developed
for the ASM and the SOC state in high dimensions were well studied [13-15].

We are interested in the effect of anisotropy on the SOC. Because there are many cases in
which the anisotropy of the evolution rules changes the critical exponents; a typical example
is the directed percolation transition. For the completely directed case of the ASM, Dhar and
Ramaswamy obtained some critical exponents which are defined especially for the systems
which extend to infinity in one direction [16]. Kadanodt al performed the computer
simulations in both the isotropic and the completely directed cases on the square lattice [17].
Their numerical results show that the expected number of topplings per added particle in the
SOC state({T'), depends onthe system sizasL* for largeL. Based on their simulation results
and by the simple analogy of the biased and unbiased random walk problems, Kadahoff
conjectured that the critical exponent= 1, if any anisotropy is included in the system [17],
although, in the isotropic case, Dhar obtaineg 2 exactly [8]. Kamakurat al studied this
problem by systematically changing the degree of anisotropy in their computer simulations
and reported that their numerical results suggested that the expocianges from 2 to 1
when the system hasyanisotropy [18]. Recently, Head and Rodgers studied the anisotropic
Bak—Sneppen model in one dimension and showed that, even when the slightest anisotropy is
introduced, the system falls into a different universality class [19].

In this paper, we define thdirected Abelian sandpile modé@DASM) by introducing a
parameter representing the degree of anisotrgpyhere thec = 1 case corresponds to the
isotropic case. We obtain the explicit expressions for the number of the allowed configurations,
the entropy andr’) in the cases of one and two dimensions using Dhar’s formulae. In particular,
our results forT) show that

B 2 if c=1 11
TT11 i 21 (4.1)

bothin one and two dimensions. Thisisthe proofof the conjecture by KadatratfiMoreover,
these results allow us to introduce a critical expongntharacterizing the diverging behaviour
of the coefficients ofT) for thec # 1 infinite systemsy = lim; ,.(T)/L, asc — 1. We
define this exponent as

x ~lc—17"° for |c—1«1 (1.2)

and refer to it as thanisotropy exponenOur exact solutions conclude thtat= 1 both in one
and two dimensions. Though we only report the results for the DASMndgtrest-neighbour
interactionsin this paper, it is implied that the anisotropy is relevant for the SOC in general
and an arbitrarily small amount of anisotropy also changes the exponents in the DASMs with
more complicated interactions [19, 20].

Since(T) expresses the mean volume of an avalanche, our result (1.1) implies that the
avalanches in the directed cases are one-dimensional, while they are two-dimensional in the
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undirected cases, independent of the spatial dimensionality in which the model is defined. If
(2.1) is true for any dimension, it may be concluded that the upper critical dimedgsiar2
in thec # 1 cases, althougt}, = 4 in thec = 1 case.

This paper is organized as follows. In section 2 we introduce the DASM on the
d-dimensional hypercubic lattices. In section 3.1 we calculate the number of allowed
configurations, the entropy and’) of the DASM on a one-dimensional lattice exactly, and
section 3.2 is devoted to the two-dimensional case. Some details of the calculati@hsiod
given in the appendices. Concluding remarks are given in section 4.

2. Definition of the DASM

In this section we give a precise definition of our DASM.
Consider a finite set of sites ondadimensional hypercubic lattice with linear size
A4(L), defined by

Ay ={x=(x1,....,x0) :x€Z1<x, <L,k=1,...,d}. (2.1)

To each siter € A,(L) a positive integer variablg(x) is assigned, which can be regarded as
the number of grains of sand or the height of the sandpile at sitée stability of the system
is characterized by a set &f critical valuesz¢(x) for x € A4(L). Whenz(x) < zc(x) is
satisfied at all sites, this systensimble Whenz(x) > z¢(x), sitex is said to be over-critical,
and the system including such over-critical sitesristable

Assume that the system starts at an arbitrary stable configuration. The time evolution of
this model is the same as that of the ASM, and consists of the following two processes.

(i) Adding a particle.
Add a particle at a randomly selected site A,(L). This means that,

z(x) > z(x) +1 (2.2)

and otherz(y)'s (y # x) are unchanged. In this procedure, the probability of selecting
each site is not necessarily equal. For simplicity, however, we assume that each site is
selected with equal probability for adding a particle from now on.

If this system still remains stable, repeat the above procedure until the system becomes
unstable. If the system becomes unstable, then every over-criticedgitiesaccording to the
following toppling rules.

(il) The toppling rules.
The toppling rules are specified in terms oflathx L? integer matrixA. If z(x) > z¢(x),
then

z(y) = z(y) — Ax, y) forall ye Ay(L) (2.3)

whereA(x, y) is the(x, y)-element ofA. In general, the diagonal elements®fmust

be positive, and the off-diagonal elements must not be positive. To relax this system
to a stable state, some particles may leavygL), then A must satisfy the condition,
ZyeAd(L) A(x,y) > 0[8].

We impose the open boundary condition so that some particles can leave the system
if topplings occur at a corner or edge of the lattice. More precisely, this condition can
be written by introducing the sink sites as,(L + 1) \ Ay4(L), on these sinks no particles
are added and no topplings occur. The open boundary condition corresponds to fixing
z(x) = 1Vx € Ay(L+1)\ Ay(L). This dissipation plays a key role to evolve the system to a
steady state.
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The topplings continue until the system settles down in a stable configuration, and this
series of the topplings are callesh avalanche After an avalanche, a new particle is again
added to the system.

The anisotropy of this model is introduced by making a preferable direction of dropping.
In the DASM, when a toppling occurs atthen particles om drop onto its nearest-neighbour
sites Ny (x) = {x e, 1 x € Ag(L), k =1,2, ...,d}, where{e;} are the bases of t1&’. Let
us divide this site set into two subsepgsitiveandnegativenearest-neighbour sites/; (x)
andN; (x) respectively, where

Njx)={x+e:xeAg(L),k=1,2,...,d}

Nyx)={x—e:xeAg(L), k=12, ...,d)}.
Let ¢ be a positive rational number ande a positive integer such that is a positive integer.
We assume that(x) = d(c +1)¢ forall x € A4(L), and in a toppling at, c¢ particles drop

onto N (x) while ¢ particles drop ontdV; (x). Thus the(x, y)-element ofA can be written
as follows for allx, y € A (L).

(2.4)

d(c+1)¢ if y=x
I if yeN;(x)
A(x,y) = s ity e N (2.5)
0 otherwise.

Note that represents the degree of anisotropy, and tkel case corresponds to the isotropic
case. By choosing the appropriately we can consider the weakly anisotropic case. For
example, for = 1.1, we may takeé = 10, and then at a toppling; = 11 particles drop onto
the positive nearest-neighbour sites @ne- 10 particles in the negative nearest-neighbour
sites.

It can be easily confirmed that thie, ¢)-DASM with ¢ > 1 is the same as th&/c, c¢)-
DASM. Therefore, without loss of generality, we can assumel.

3. Exact calculations

In this section we calculate several quantities characterizing the SOC state of the DASM. For
the ASM, the number of allowed configurationéz, is generally given by [8,9,21]

Ngr = detA. (3.1)
Dhar defined the entropy, and the entropy per site in the infinite-volume limsitas
S = log Nr (3.2)
. S
s = Lll_r)noo Ta (3.3)

Let G(x, y) be the average number of the topplings aaused due to adding a particle at site
x, then [8]

G(x,y) =[A] Y (x, ) (3.4)

where A~1 is the inverse matrix ofA. Thus the expected number of topplings per added
particle,(T), can be written as

<T>=L—ld Y. D Gy (3.5)

xeAy(L) yeAy(L)
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3.1. One-dimensional DASM

To calculate eigenvalues a@f and A~*, we first diagonalizeA. SinceA is not symmetric,
the diagonalized matrixA, is obtained using two matrice® andQ, A = PAQ. Thus, if
PQ = QP =E, then A~ = QA~1P. Let P(n, x) and Q(x, n) be the elements af and
0, respectively. We found thatfar,n =1,2,...,L

x . nx

P(n,x)= L+lc2 S|n<L+1T[) (3.6)
_x . X

QGr.m =/ e zS|n(L+1n). 3.7)

It follows that the(n, n")-element ofA,

A(n, n/) = 8n,n’)\(n) (38)
with
An) = {c+1— 2¢Ecos(LL+ln)} . (3.9)
From (3.1)
L
Ng=]]rm)
n=1
L+1 _ 1
= ¢t (3.10)
c—1
Here we have used the formula,
n—1 2
x -1
H(x —2xcos< : )+1) - (3.11)

r=1
In order to take the isotropic limit — 1 we first expand (3.10) with respectdabout
c=1,

Nr = (L+ D¢ L1+ 3L — 1) +O((c — )] (3.12)
and then we have
Np1 = IimlNR

= (L+1ct. (3.13)
From (3.2) and (3.3), we have for generat 1
CL+1 -1
S=LInE@)+In ( ) (3.14)
c—1
s=Inct. (3.15)

Using (3.6), (3.7) and (3. 9’7}51 can be obtained and substituting it into (3.5) givEs as

L i) Y sin(%0)

L(L+1)§Zc+1 2[cos(L+ln ZC sm(
L(L+1)§Z{2 (" e 2)}Sm2(L 1" )

3
1
. [1 +e— Zﬁcos(%ﬂn)} ' (3.16)
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From this expression7’) seems to diverge exponentiallyegswhenL > 1. HoweverL3c~ %
comes out by performing the summation, and such exponential factors will be completely
cancelled. It is remarkable that the approximation of the summation with an integral fails to
derive theL3¢~ % terms. The way to perform the summation is given in appendix A, and the
final expression is

1 [ 1 L4 @D ,

= 2L |: 15 1@ (L+D° - (c— 1)2(L + 1):| (3.17)
L

T 2(c—1) for L> 1. (3.18)

Thus we obtainc = 1 andd = 1.
In order to take the isotropic limit — 1 we first expand (3.17) with respectd@mbout

c=1,
Ty = 1 [L(L +D(L+2) (L+DEL+2
2L¢ 6 12
Although (3.17) seems to be singularcat 1, this expression has no singularitycat= 1,
since the singular part of each term in (3.17) cancel each other. Thus we obtain,
(T = j_iin1<T>

L(L+1)(L+2)

12L¢
LZ

~ [P for L > 1. (3.20)

This means that = 2 forc = 1.

It is remarkable that those expressions can be obtained from the (3.17) by ¢aking
andL — oo only in this turn, since thé > 1 approximation eliminates the partner in the
offsetting of singular parts in the expansion about 1.

(c—1)+0O((c — 1)2)} ) (3.19)

3.2. Two-dimensional DASM

We choose the elements Bfand Q matrices as follows:

2 wmp ./ N1X] [ N2X2
P@n.x) = ¢ Sln(mn> 5|n(L+1n) (3.21)
2 _xto nixi . naxo
Q(.X, n) = I+ 1C 2 SIn (m?’[) Sin (mﬂ) (322)
wherex = (x1, x2) andrn = (n1, np). From these expressions, the eigenvaluea afan be
obtained as
ni ns
rn) =2¢ {c+1—ﬁ(cos<L+ln) +cos<L+ln>>}. (3.23)
From the formula (3.3), the entropy per site in the infinite-volume limits given as

s=|n2§+$/n /ndedgb In[c +1— /c(cosh + cosg)]. (3.24)
0 0

The inverse matrix oA can be calculated with the above expressiongfo@ anda(n),
and using the formula (3 5) gives
sin’ (£5) i (7%5)

(
L2(L +1)2¢ Z Z c+1-./c (cos(”l”) cos(42%))

ni=1lnp;=1 L+1 L+1

(T) =

L+1

L2 (YT A ) 2 (e r e
{1+ —2vccos(z))’ {1+c—2ﬁcos<z%)}2'

(3.25)
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By performing the double summations carefully, we obtain
3(c—1)¢
The details of the derivation are explained in appendix B.

From this expression, we can conclude that

x=1 for ¢#1 and 6 =1 (3.27)

(1) for L1 (3.26)

It should be remarked that the result (3.24) shows that the entropy of the SOC is enhanced by
the anisotropy but the dimensionality of the avalanches in the SOC is reducead foghto
x =1

4. Concluding remarks

The explicit expression (3.17) for the one-dimensigdalis very useful to see how the critical
exponentx changes from 1 to 2 asapproaches 1. Let

2 -1
fle, L) = (T) x %

We define thescaling limit limscaing as the double limitg — 1 andL — oo keeping
(¢c — 1)L = z a constant. From (3.17), we obtain

(4.1)

Sscaling(z) = slcierJi]ngf(C’ L) 4.2)
z 2
= coth(E) - (4.3)
The scaling limit of(T") is now defined as
L
<T>scaling = mfscaling(z)~ (4-4)

Note that theg — oo limit means taking thé&. — oo limit keepingc # 1, which corresponds

to the anisotropic case. On the other hand,zhe 0 limit means taking the — 1 limit
faster than the infinite-size limit, which results in the isotropic case. From (4.3) and (4.4), itis
immediately given that

- L

ZlLrT;o<T)scaling: 2¢(c—1) o
. _L2

!l_r)n()(T)scaling: 12¢° B

They correspond to the expressions (3.18) and (3.20).

Recently, Shimamura&t al studied the DASM by computer simulations [22]. The
numerical data support our result§;) ~ L* with (1.1) both ind = 1 and 2. Moreover,
Shimamureet al observed that in thé = 2 case the distribution function of the number of
topplings per added particl@r, also obeys the power-lafi—* for the directed cases# 1,
but that in thed = 1 andc # 1 case,P;y seems to be the white noise, i8r ~ const,
and in the case af = 1 andc = 1 the data ofP; scatter even in the large systems. It is
interesting that, although the average valy&s, show the same critical behaviours for large
L and|c — 1] « 1 both ind = 1 and 2 cases, the distributioRy, exhibits such variety and
sensibility depending on the dimensionality and the anisotropy. More details will be published
in the forthcoming paper [22].
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Appendix A. Derivation of (T') in the one-dimensional case

First we define the quantity

A in?
RO G, my = ST Ko (tm) COS &y () (A1)
’ (x +sirf k,(m))!
for an arbitrary integer andp = 1, 2, where
2m — 1
k]_(m) = mﬂf and kz(m) = L+ 17T (AZ)
and consider the summation
[
SPx) =D RY(x,m) (A.3)
m=1
for p = 1, 2. Then we divide the summation of (3.16) into the casesefeven and odd as
c 2 L+ _in L+l L
) = grapee e+ ISP E T 2= T T TITE (A9
where
c% — c_%
— A.5
p=— (A.5)

Thus we must obtais? (%) and S5 (82).
We can confirm the following identities for any integeg 1,

h 2 = h
tanh(2n + Dx = t;nfl + ) Y fanh e
l r=0 Slﬂ2 (W) + co% (W) tanhzx (AG)
1 1& tanh
coch;x:—cochx+—Z — xm .
n n = sin® () + cog (£) tantf x
Using these identities we obtain
L+1  il+g() :¢D
S17 () = =g E S
1+g(x)—2*D
_1 L—1) (A7)
@ L+1 11l—g(x) 3(
S50 (x) = Tg(x) S VT FTI
1—glx)—2®
where
4
g(x) = (ﬁ+ Ji+ 1) . (A.8)
Sinceg(8?) = ¢, we have
L+1 _;1+c¢ 20D
Sf)(ﬂz) == o3 _
1+ 2L+ A9
L+1 11— 3CD (A.9)
D (g2 e i
S () = c?

4 1— 3@+’
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Ingeneral sy, s fori > 1 can be calculated by determining their generating functions.
Define$¥ (a) (p = 1,2) as

() _ 2iali) a2
$9(a) = a5V (8?)

(5]

-y _sinz kp(m)czosz kp(m) (A10)
“— (sink,(m) +a“ cosk,(m))’
where
c% + c_% B c% — c—zl
o= — and a==—=— - (A.11)
2 (o4 ca+c 1
The generating functiongf,(z, a), p = 1, 2, are defined as
Hy(z.a) =) (i — DSV (a)7" 2 (A.12)

i=2

We can derive partial differential equations #y(z, a). Using (A.9) as the initial conditions
atz = 0, we solve them as

Hi(z,a) = L+1 (L +1)sech | (L +1)arctan a?—z
W W= a2 12 12
2z—a’—1 2 _
T S N tanh| (L + 1) arctan L 2
Viz—a®)(z -1 11—z
(A.13)
L+1 a? —z
Hy(z,a) = _4-(612——1)2 (L+1) COSECH (L +1) arctan 1
2z —a’>—1 2
__gma Tz coth| (L + 1) arctan S 2
Viz—a®)(z -1 1—z
From these generating functions, we can deﬂyéas
S(k+2) (/32) —2(k+2) 1 8k H ( ) (A 14)
= —_— | — ,a .
p k+ D Lok "]
foranyk > 0 andp = 1, 2. In particular we obtain the= 3 case,
_ 3D —L@+y 2
S§3)(,32)=4c%1 c 12 L+1 ok (c+1)c1 2 (L+1)
1+c 304 (c—1)3 (1+c50D)2 (c — 1)2
och (1- C—%(L+1))c—%(L+l) (L+1)3
L+ c—1 (A.15)

S (8?) = 48 1 +c’%1(“1) L+1 00k (c + D2 (L +1)2
1— 3 (c— 13 7 (12 iz (e - 12
gt (e 220D (1 +1)3
(1—c 23 c—1"

Substituting these expressions in (3.16) immediately leads to the final expressions (3.17).
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Appendix B. Asymptote of (T') for large L in the two-dimensional case

Let

A B2+ Sir? k, (my) + B2 + sir? k,, (m2)
1 1
X - X -
(B2 +5sirf ky(m1))2 (B2 +Sirf k,(m2))?
foro, p =1, 2. Itis clear that/,, = J,,,. Define

5 [i”:] [i“:] Sir? k, (m1) COS k, (m1) S k,, (m2) COF &, (m2)
my=1my=

(B.1)

Ji=Ju—Jo—Jat+tJn
Jo=Juu—J» (B.2)
J3 =3J11+ Jio+ Jo1 + 3J20.

Then (3.25) can be written as

C 2

T)=—————-xK B.3
with

K = J1€L+l + 4]26% +2J3+ 4J267% + J]_Ci(LH'). (B4)
Dividing the fractional expression i}, , given by (B.1) into three partial fractions, we have

Top =T+ 12 — I (B.5)

where
I8 =52(6% x 8P (B
L+1
2
J2 =37 RO (B2 m)SP (287 + Sirf ky (m)) (B.6)
m=1
I = s9(B%) x ST (B).
We define fork = 1, 2, 3
*) & _ gk _ gk, 0
‘]lk = 11]% - Jl% —Jor Ty
Jz( "= Jl(l) - Jz(z) (B.7)
5 =3 g e v
Using (A.13) and (A.14), we can obtafi§’ (8?) as well ass> (%) given by (A.15) and
it can be proved that

lim JU = —
L—><>O(L+1)5l c—1

; cz 1 _ B.8
Llinoo(L+1)5J2 =0 ®9

i @ _
Jim (L +1)5 557 =0.

Let
L+1 sinhIng(x))
2 sinh(E Ing(x))

F(x) = (B.9)
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whereg(x) is defined by (A.8). Then

[ L+1] [ L+1]

1639

72 = ZR(4)(ﬂ m)F(2B% + sirf ky(m)) — ZR“‘)(,B m)F (2B% + sirf ko(m)). (B.10)

We expandF (282 + sir? k,(m)) abouts?. For M > 4, Taylor's theorem gives

= d'F
F(2B%+sirfk,(m)) = F(B?) + Z = [ = ix)

n=1

] x (B2 +sirf k,(m))"
x=p2

. 1 |:dMF(x)_

il x (B2 + sirf k, (m))M

dxM dx=p2+0(B2+sir? k, (m))
with 0 <? § < 1. Substituting this into (B.10) and the definition (A.3) gives

d"F(x n . 1
2= J1(3)+Z [ o] X S = S Ry

with

L+1
dM F(x)
Ry = ZR“‘ g2, )[ o ]
X x=B2+0(B2+sir? ky(m))

_ i REM (82, m [d F(x)

It is easy to prove that for any< 0
Sy (%) — S (8% =0
if L > |i| +2. Then we have

1o = Jl<3>+2n| [d"F(X)} (S () — 5(4_")(ﬂ2))+%RM
x:ﬁz :

:|x52+0(ﬂ2+sin2 ka(m))

dx”
for L > M — 1. Since this holds for arbitrary/ > 4, we conclude that

S 1[d'F —n
J]Fz) . J{g) _ Z m |: (.X):| _ﬁz (4 n)(ﬁZ) S(4 )(/32))

dx”
n=1
for L > 1. Using (A.7), (A.13), (A.14) and (B.9), we can show that

oL+l (1(2) 1(3)) _ _8 cz
(L + 1)5 3c—-1

Next we let
gm = g(2B% +sinf ky(m)).
Then (A.7) gives

L+1] _: . 1 > -1 n
S;.l)(gm) = T|:gm2 - ZSInh<§ In gm) X Z(_l)nng(L+l) i|
n=1

Sinceg,, > ¢ for ¢ > 1, we can prove that

L

+
=

L+l L+1 [
lim J? == |im
Looo (L+15°1 — 41 oo(L+l)4

]

N“

_1
Ri‘” (B2, m)gm?.

HM

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)
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Inthe same way, we obtain the similar equation)fﬁ?. Following the same argument deriving
(B.16), we obtain

L+1 L+1
L @
lim A lim
Lo (L+1)5( 2 )= 4 L—>oo (L+1)4Z i ng(x) e
x (S (%) — S5 (B2). (B.21)
In this case, we find that this limit is zero. In the same way, we can also prove that
; <2> Gy _
Jlim i+ 1)5( —-Joh)=o. (B.22)
Since
Jo=JD+J2 @ (B.23)
fora =1, 2, 3. These results give that
im ck*t ; 16 c?
| —_—
Lmoo (L+1)5 " Be—1
L+1
F _p-o0 (B.24)

Jm, (L+1)5"2
1

M L1
Then we obtain
jm L g 16ct
L—oo (L + 1)5 3¢-1
which gives (3.26) through (B.3).

(B.25)
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